Laminarin Effects, a b-(1,3)-Glucan, on Skin Cell Inflammation and Oxidation

Laminarin, a β-(1,3)-glucan from the seaweed Laminaria digitata, is a polysaccharide which provides anti-inflammatory and anti-oxidative properties. Its influence on both human dermal fibroblasts adult (HDFa) and normal human epidermal keratinocytes (NHEK) has not been established yet. Herein, laminarin effects were examined on skin cells’ mitochondrial and antioxidant activities. Cytokines, hyaluronic acid, and procollagen type I secretions and interaction mechanisms were explored after a maximum of 72 h treatment with laminarin. Our results demonstrated a decrease in mitochondrial activities with 72 h treatment with laminarin from 500 µg.mL−1 for NHEK cells and from 100 µg.mL−1 for HDFa cells without cytotoxicity. No variation of hyaluronic acid or type I procollagen was observed for all laminarin concentrations, while an antioxidant effect was found against reactive oxygen species (ROS) from 1 µg.mL−1 for HDFa cells in both H2O2 and UVA radiation conditions, and from 10 µg.mL−1 and 1 µg.mL−1 for NHEK cells in both H2O2 and UVA radiation conditions, respectively. Laminarin treatment modulated both cells surface glycosylation and cytokine secretions of skin cells. Overall, our data suggest a positive effect of β-(1,3)-glucan on skin cells on oxidative stress and inflammation induced by environmental factors. Of note, these effects are through the modulation of glycan and receptors interactions at the skin cells surface.