

Glycosciences Products 2020

Table of contents

经 会现在100 代	
10 1 L	
图图图 原源	
STANATT	
#	
三 方	
COLUMN TOTAL COLUM	
-1-1-0	
- FI	

Lectins	3
Natural Lectins	3
Recombinant Lectins	4
Neoglycoproteins	5
Neoglycoclusters	6
LEctPROFILE plates	7
LEctPROFIE kits	9
FimH LEctPROFILE kit	9
Affinity gels chromatography	10
LEctPROFILE gels	10
CarhPROFILE gels	11

GLYcoDiag

Lectins

3

Description

Lectins are proteins or glycoproteins which possess the ability to bind specifically sugars. They have no enzyme activity and are not antibodies. Lectins are ubiquitous in nature, being found in all kinds of organisms (virus, microorganisms, plants, invertebrates and vertebrates). Lectins are usually oligomeric proteins and have many binding sites. The binding constant of the specific free sugar is generally many orders of magnitude lower than the binding constant of a glycoconjugate (glycolipid, glycoprotein...) containing this sugar. Lectins agglutinate cells, some lectins are even blood type specific, but they are also able to recognise cells surface glycans allowing to distinguish between different cells species and states. Furthermore some lectins stimulate lymphocyte and induce mitosis. The lectins have been used for :

- Studies of glycobiological interactions with glycans or glycans mimics
- Detection, isolation, and structural studies of glycoproteins
- Study the dynamics of the cell surface glycoconju gates
- Cell identification and to separate subpopulation of cells and subcellular organelles
- Study endocytosis, neoplastic transformation
- Mitogenic stimulation of lymphocytes
- Glyco-biomarkers dicovery and new diagnostics assays design

List of Natural Lectins

Reference	Short Name	Common name	Glycans structures specificity
L1222	ABA	Agaricus Bisporus	Gal(β-1,3) GalNAc
L1221	AIA / Jacalin	Artocarpus intergrifolia	Gala1-6 or Galb1-3GalNAc (T-antigen)>> lactose, more specific for T-antigen than PNA
L1367	AML	Astragalus membranaceus	Galb
L1205	ASA	Allium Sativum agglutinin	α(1,3)-linked mannosyl units
L1889	BanLec	Musa Acuminata	αMan
L1254	CJA	Crotalaria juncea	Gal (Lac>GalNAc)
L1366	cMOL	Moringa oleifera	Complex glycans, inhibited by asialofetuin
L1201	Con A	Canavalia ensiformis	Man > Glc ; branched mannoses a
L2349	CorM	Coregonus lavaretus marenae	Rha
L1206	GNL / GNA	Galanthus nivalis	Terminal mannoses. Mana1-3Man ; a2-macroglobulin ; bind mannopentaose
L1202	LcH	Lens culinaris	Mana/Glca > GlcNAca, enhanced by Fuca1-6 on the core GlcNAc-Asn N-glycopeptides
L1252	NPA	Narcissus pseudonarcissus Daffodil	External or internal a or b mannose
L1240	PHA E	Phaseolus vulgaris	Galb1-4GlcNAcb1-2Man, the bisecting GlcNAcb1-4Man is essential.
L1239	PHA L	Phaseolus vulgaris	Galb1-4GlcNAcb1-6Man of branched structures of N-glycans, Galb1-4GlcNAcb1-2Man.
L1223	PNA	Arachis hypogaea	Lactose, T- antigen
L1203	PSA, PEA	Pisum sativum	Man > Glc ; enhanced by Fuca1-6 on the core GlcNAc-Asn N-glycopeptides, IgM1A mouse
L1216	SBA	Glycine max	Preference for a over b-glycodidic linkage.
L1237	SNA	Sambucus nigra	Neu5Aca2-6Gal/GalNAc
L1261	TXLC-I	Tulipa gesneriana agglutinin	GalNAc, Gal
L1253	VEA	Vicia ervilia	Man>trehalose>Glc
L1204	VFA	Vicia faba	Man >Glc>GlcNAc
L1230	WGA	Triticum vulgare	GlcNAc; GlcNAcb1-4 oligomers , core of Asn linked oligasacchide; Neu5Ac

Lectins

4

List of recombinant Lectins

Reference	Short Name	Common name	Glycans structures specificity
L1255	BC2L-A	Burkholderia cenocepacia lectin A	Manα1-2, Manα1-3, Manα1-6, dimanoside,
L1256	BC2L-C	Burkholderia cenocepacia lectin C (N terminal domain)	Fuc, oligo H type I, Lewis B, Lewis Y
L1688	FimH	Escherichia coli adhesin FimH	Mannosylated structure
L2094	HPyL	Human Polyomavirus 9 VP1	Neu5Gc
L1257	PA-IL	Pseudomonas aeruginosa lectin A	Galα, Globoside
L1259	PAII-L	Pseudomonas aeruginosa lectin B (Lec B)	Fuc >> Man, Lewis A
L2099	RPL-Fuc1	Recombinant Prokaryotic Lectin Fuc1	α-linked Fucose
L2095	RPL-αGal	Recombinant Prokaryotic Lectin αGal	Terminal α-linked Gal & GalNAc
L1579	RPL-Gal1	Recombinant Prokaryotic Lectin Gal1	Terminal β-linked Gal & LacNAc
L1580	RPL-Gal2	Recombinant Prokaryotic Lectin Gal2	Terminal α-linked Gal > GalNAc
L1581	RPL-Gal3	Recombinant Prokaryotic Lectin Gal3	Terminal α-linked Gal
L1582	RPL-Gal4	Recombinant Prokaryotic Lectin Gal4	Terminal β-linked Gal, LacNAc & Lewis x (Lex)
L1583	RPL-αMan	Recombinant Prokaryotic Lectin αMannose	Fucose/Mannose: Lewis a (Lea), Lewis x (Lex) & terminal α-mannose
L1584	RPL-Man2	Recombinant Prokaryotic Lectin Man2	Terminal α-mannose
L2096	RPL-Sia1	Recombinant Prokaryotic Lectin Sia1	Terminal α2-3-linked Sialic Acid (Neu5Ac) – on both N-linked and O-Linked
L2097	RPL-Sia2	Recombinant Prokaryotic Lectin Sia2	Terminal α 2-3-linked Sialic Acid (Neu5Ac) on O-Linked Glycans
L2098	RPL-Sia3	Recombinant Prokaryotic Lectin Sia3	Terminal α-linked Neu5Ac
L1258	RSL	Ralstonia solanacearum	Fuc

Neoglycoproteins

Description

Neoglycoproteins are **glycosylated bovine serum albumin** (BSA) molecules obtained after the conjugation of a phenylisothiocyanate glycosides with the ϵ -amino groups of lysine residues of BSA. The synthesis of each neoglycoprotein is conducted under a standardized procedure allowing an excellent batch to batch reliability. Each neoglycoprotein is submitted to a complete quality control ensuring a total conformity with the specifications: purity, carbohydrates/protein ratio, labeling and **functionnality assessed by interactions with lectins**.

Mono and di-saccharide neoglycoproteins are produced routinely and always available (from 1 mg to 50 mg) in unlabeled or fluoresceinylated forms. Biotinylated or other conjugates as well as more complex neoglycoproteins are available upon request.

Intended use

Neoglycoproteins are known as "amplifiers" of carbohydrates-proteins interactions. The use of neoglycoproteins as tools to decipher glycoconjugates, carbohydrates binding proteins and more generally proteins-carbohydrates interactions were described in many studies (see bibliography). Neoglycoproteins are used in number of methods including histochemistry, ELISA assays, blotting assays, affinity chromatography, cytochemistry by flow cytometry, confocal or electron microscopy. Neoglycoproteins can be use for research purposes to:

- Identify lectins or lectin-like proteins.
- Purify lectins or other carbohydrate-binding proteins.
- Design new diagnostic tools.
- Discover biomarkers.
- Target drugs.
- Trigger immune response against carbohydrates moieties.

Benefits

- The **affinity** of the neoglycoproteins is 10₂-10₄ higher than that of the corresponding free sugars.
- The neoglycoproteins are very reliable and **stable products** that can be labeled with great flexibility.
- The **high solubility** in aqueous solutions makes neoglycoproteins very powerfull reagents for glycosciences studies.

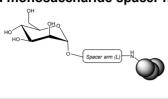
•	
Description	Reference
βChitobiose-BSA	NeoCT
βchitobiose-BSA-F*	NeoCTF
αLFuc-BSA	NeoF
αLFuc-BSA-F	NeoFF
αDGal-BSA	NeoGa
αDGal-BSA-F	NeoGaF
βDGal6P-BSA	NeoGaP
βDGal6P-BSA-F	NeoGaPF
αDGalNAc-BSA	NeoGaN
αDGalNAc-BSA-F	NeoGaNF
αDGlc-BSA	NeoaG
αDGlc-BSA-F	NeoaGF
βGlc-BSA	NeobG
βGlc-BSA-F	NeobGF
βDGlcNAc-BSA	NeoGN
βDGlcNAc-BSA-F	NeoGNF
βDLac-BSA	NeoL
βDLac-BSA-F	NeoLF
αDMan-BSA	NeoM
αDMan-BSA-F	NeoMF
αDMan6P-BSA	NeoMP
αDMan6P-BSA-F	NeoMPF
αLRhamnose-BSA	NeoR
αLRhamnose-BSA-F	NeoRF
BSA-F	NeoBF
Glucitol-Bsa-F	NeoGolF
* • 🗆 – 🗆	orogoginylated

*: F = Fluoresceinylated.

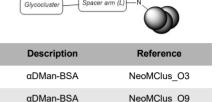
5

Bibliography

- Cerdan et al. (1991). Human keratinocytes membrane lectins : characterization and modulation of their expression by cytokines. Biol. Cell., 73, 35-42.
- Duverger et al. (1999). Interaction between lectins and neoglycoproteins containing new sialylated glycosynthons. Glycoconjugate J., 16, 793-800.
- Minwalla et al. (2001).Inhibition of melanosome transfer from melanocytes to keratinocytes by lectins and neoglycoproteins in an in vitro model system. Pigment Cell. Res., 14, 185-194.
- Midoux et al. (1987). Quantitation of the binding, uptake, and degradation of fluoresceinylated neoglycoproteins by flow cytometry. Cytometry, 8, 327-334.
- Monsigny et al. (1984). Uptake of neoglycoproteins via membrane lectin(s) of L1210 cells evidenced by quantitative flow cytofluorometry and drug targeting. Biol. of the Cell, **51**, 187-196.
- Monsigny et al. (2007). Carbohydrate-mediated Interactions. 3.23. Neoglycoproteins. Comprehensive Glycoscience. From Chemistry to Systems Biology. Amsterdam, Elsevier. 3, 477-521.


Neoglycoclusters

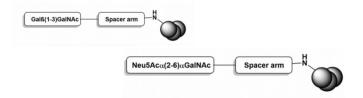
Description


Neoglycoproteins are **glycosylated bovine serum albumin** (BSA) molecules. In order to improve accessibility and avidity of a carbohydrate-binding proteins, a new version of neoglycoproteins containing spacer arm (*i.e.* an alkyl spacer) were developed and proposed either with monosaccharides or with glycoclusters.

- Standard monosaccharide spacer neoglycoproteins:

Description	Reference
αDFuc-BSA	NeoFL
αDGal-BSA	NeoGaL
αGalactofuranose-BSA	NeoGafL
αNeuGc-BSA	NeoNeuGcL
αDMan-BSA	NeoML

- **Neoglycoclusters**, achieved by introduction of a carbohydrate cluster containing 3 to 9 carbohydrates units:


NeoMClus_2O3

αDMan-BSA NeoMClus_2O9

O3 = 3 monosaccharides/cluster; 2O3 = 3 disaccharides/cluster
O9 = 9 monosaccharides/cluster; 2O9 = 9 disaccharides/cluster

αDMan-BSA

- Tumor associated carbohydrate antigens like neoglycoproteins: T and STn neoglycoproteins with respectively $Gal\beta(1-3)GalNAc$ and Neu5Ac(a2-6)GalNAc were developed. These two neoglycoproteins are potentially useful for the research and development of some cancer diagnostics and immunotherapies.

Description	Reference
Neu5Acα6GalNAc-BSA	NeoSTn
Galβ3GalNAc-BSA	NeoT

The synthesis of each neoglycoprotein is conducted under a standardized procedure allowing an excellent batch to batch reliability. Each neoglycoprotein and neoglycocluster is submitted to a complete quality control ensuring a total conformity with the specifications: purity, carbohydrates/protein ratio, labeling and **functionnality assessed by interactions with lectins through GLYcoPROFILE method**.

Monosaccharide spacer neoglycoproteins and neoglycoclusters are **produced routinely and always available** (*i.e.* 1 mg) in unlabeled forms (*labeled products available on request*).

Benefits

- The **affinity of neoglycocluster** is 10² to 10³ higher than usual neoglycoprotein.
- Neoglycoproteins ans neoglycoclusters are very reliable and stable compound.
- The high solubility in aqueous solutions makes neoglycoproteins and neoglycocluster very powerfull reagents for glycosciences studies.

Bibliography

- Duverger et al. (1999). Interaction between lectins and neoglycoproteins containing new sialylated glycosynthons. Glycoconjugate J., 16, 793-800.
- Minwalla et al. (2001).Inhibition of melanosome transfer from melanocytes to keratinocytes by lectins and neoglycoproteins in an in vitro model system. *Pigment Cell. Res.*, **14**, 185-194.
- Monsigny *et al.* (2007). Carbohydrate-mediated Interactions. 3.23. Neoglycoproteins. Comprehensive Glycoscience. From Chemistry to Systems Biology. Amsterdam, Elsevier. **3**, 477-521.

LEctPROFILE plate

Description

The **LEctPROFILE plate** is a lectin array (1,2) proposed by GLYcoDiag to highlight specific types of structures and/or to indicate the potential modifications of glycans with respect to reference structures. The relevant choice of a range of lectins (naturals (Table 1) or recombinants (Table 2)) makes it possible to validate the structure of glycans in a short time and with very simple basic equipment.

Each lectin are immobilized on the bottom of microtiter plates (96-well format), intended for absorbance or fluorescence interaction measurements. Up to 28 different lectins (see the list below) are proposed in a minimum format of 2 strips of 8 wells, in order to compose one or more microplates adapted to the desired analysis.

LEctPROFILE plate lectins

LP1222 LP1221 LP1367	ABA AIA/Jacalin AML	Agaricus Bisporus Artocarpus intergrifolia
		Artocarpus intergrifolia
LP1367	AML	
LP1367 AML		Astragalus membranaceus
LP1205	ASA	Allium sativum agglutinin
LP1889	BanLec	Musa acuminata
LP1209	BPA	Bauhinia purpurea
LP1254	CJA	Crotalaria juncea
LP1366	cMOL	Moringa oleifera
LP1201	ConA	Canavalia ensiformis
LP1249	CorM	Coregonus lavaretus marenae
LP1211	DBA	Dolichos biflorus
LP1206	GNL, GNA	Galanthus nivalis
LP1202	LcH	Lens culinaris
LP1252	NPA	Narcissus pseudonarcissus Daffodil
LP1236	MAA	Maackia amurensis
LP1242 MOA		Marasmius oreades agglutinin
LP1240 PHA-E		Phaseolus vulgaris
LP1239 PHA-L		Phaseolus vulgaris
LP1223 PNA		Arachis hypogaea
LP1203 PSA		Pisum sativum
LP1216	SBA	Glycine max
LP1237	SNA	Sambucus nigra
LP1261	TXLC-I	Tulipa gesneriana agglutinin
LP1234	UEA-I	Ulex Europaeus
LP1229	UEA-II	Ulex Europaeus
LP1253	VEA	Vicia ervilia
LP1204	VFA	Vicia faba
LP1230	WGA	Triticum vulgare

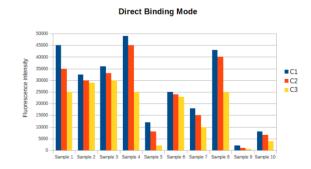
Table 1. Lists of naturals lectins available for the LEctPROFILE plate.

Phone: +33 (0) 2 38 41 72 85

e-mail: contact@glycodiag.com web: www.glycodiag.com

7

GLYcoDiag, Orléans - France


LEctPROFILE plate lectins

Reference	Short Name	Common name
LP1255	BC2L-A	Burkholderia cenocepacia lectin A
LP1256	BC2L-C	Burkholderia cenocepacia lectin C (N terminal domain)
LP1688	FimH	Escherichia Coli Adhesin FimH
LP2094	HPyL	Human Polyomavirus 9 VP1
LP1257	PA-IL	Pseudomonas aeruginosa lectin A
LP1259	PAII-L	Pseudomonas aeruginosa lectin B (Lec B)
LP2099	RPL-Fuc1	Recombinant Prokaryotic Lectin Fuc1
LP2095	RPL-αGal	Recombinant Prokaryotic Lectin αGal
LP1579	RPL-Gal1	Recombinant Prokaryotic Lectin Gal1
LP1580	RPL-Gal2	Recombinant Prokaryotic Lectin Gal2
LP1581	RPL-Gal3	Recombinant Prokaryotic Lectin Gal3
LP1582	RPL-Gal4	Recombinant Prokaryotic Lectin Gal4
LP1583	RPL-αMan	Recombinant Prokaryotic Lectin aMannose
LP1584	RPL-Man2	Recombinant Prokaryotic Lectin Man2
LP2096	RPL-Sia1	Recombinant Prokaryotic Lectin Sia1
LP2097	RPL-Sia2	Recombinant Prokaryotic Lectin Sia2
LP2098	RPL-Sia3	Recombinant Prokaryotic Lectin Sia3
LP1258	RSL	Ralstonia solanacearum

Table 2. Lists of recombinants lectins available for the LEctPROFILE plate.

Applications

The evaluation of compounds interactions with lectins is achieved by the direct binding mode that evaluate potential interaction of compounds ranging from pure molecule to complex (glycocojugate(s), complex carbohydrates mixtures glycomimetics). Previous labeling of target molecule(s) by biotinylation or by fluoresceinylation is required for readout.

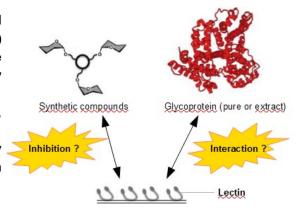
Name	Content	Analysis mode	Stability
LEctPROFILE plate	2 x 8 well strip per lectin used for fluorescence or absorbance detection	Direct Binding: until 10 samples analysed in triplicate at 3 concentrations	Each LEctPROFILE plate are stable for minimum 6 months at -20 °C

Table 3. Specifications of LEctPROFILE plates.

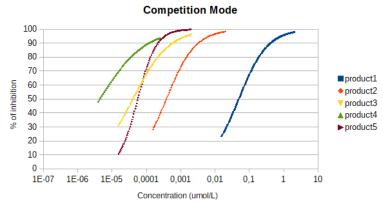
References

- 1. Hsu, K.-L., Mahal, L. K., Sweet tasting chips: microarray-based analysis of glycans. Cur. Opi. In Chem. Biol., 2009, 13, 427-432.
- 2. Hirabayashi, J., Yamada, M., Kuno, A., Tateno, H., Lectin microarrays: concept, principle ans applications, Chem. Soc. Rev., 2013, 42, 4443-4458.

Phone: +33 (0) 2 38 41 72 85 GLYcoDiag, Orléans - France e-mail: contact@glycodiag.com web: www.glycodiag.com

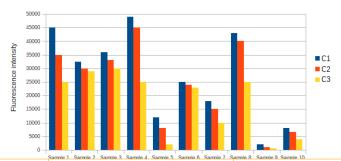

LEctPROFILE kit

The **LEctPROFILE kit** allows **efficient** evaluation of crude or purified glycoconjugates interactions (*i.e.* synthetic molecules or glycoconjugates) with lectins by a simple measurement of absorbance or fluorescence. The LectPROFILE kit enables a **fast measurement** (below 3 h) and are **easily accessible to all**.


Each kit are composed of a 96-well plate immobilised with the target lectin, the corresponding tracor and the revealing solution.

All our lectins are controlled under a standardized procedure assessed by interactions with specific neoglycoproteins or glycoproteins through GLYcoPROFILE method.

Applications


The evaluation of compounds interactions with lectins is possible by two different modes:

- **Direct Binding** are used to evaluate potential interaction of compounds ranging from pure molecule to complex mixtures (glycocojugate(s), complex carbohydrates or glycomimetics). Previous labeling of target molecule(s) by biotinylation or by fluoresceinylation is required for readout.

- Competition Mode: Competitive interaction between a sample and a specific labelled tracer known to have good affinity for the lectin without preliminary labeling of sample. This mode is typically used for the evaluation of the IC50-value (*i.e.* concentration corresponding to 50% of lectin inhibition), for the screening of potential candidate, for avidity comparison or for batch to batch monitoring.

Direct Binding Mode

Reference	Name	Specificity	Kit Content	Analysis mode	Stability
LKFimH	FimH ¹ LEctPROFILE kit	High mannosylated structure glycan(s)	x 96 microplate well for fluorescence detection; Assay reagents: FimH tracor & Streptavidine-DTAF solutions	Competition Mode: until 5-8 samples analysed in triplicate Direct Binding: until 10 samples analysed in triplicate at 3 concentrations	6 months at -20 °C
	LEctPROFILE kit	_a	1 x 96 microplate well for fluorescence or absorbance detection; Assay reagents: lectin tracor & revealing solution	Competition Mode: until 5-8 samples analysed in triplicate Direct Binding: until 10 samples analysed in triplicate at 3 concentrations	_b

Table 1. Specifications of LEctPROFILE kit. a. For specificity of LEctPROFILE kit, see our lectins specificities table. b. Each LEctPROFILEs kits are stable for minimum 6 months at -20 °C.

Bibliography

1. Hartmann, M.; Lindhorst T. K.; *Eur.J.Org.Chem.*, **2011**, 3583-3609. GLYcoPROFILE® is a french registered trademark of GLYcoDiag SARL

LEctPROFILE gel

Description

LEctPROFILE* gels are affinity gel chromatography where lectins are immobilized on a Sepharose 4B fast flow matrix. Glycoconjugates can be recovered by competition with the specific inhibitory monosaccharide of the lectin. LEctPROFILE gels are used for the purification of glycoconjugates^{1,2} with specific N-glycan residues. LectPROFILE gel are personnalized reagents produced on your request (see the list of available naturals and recombinants lectins, Tables 1 and 2) in 1, 2 or 5 mL. The binding capacity on LEctPROFILE gel of glycoprotein is over 1 mg per mL of gel.

Scheme 1. LEctPROFILE gel matrix.

List of lectins

	N	aturals lectins
Reference	Lectine	Common Name
LG1222	ABA	Agaricus Bisporus
LG1221	AIA/Jacalin	Artocarpus intergrifolia
LG1367	AML	Astragalus membranaceus
LG1205	ASA	Allium sativum agglutinin
LG1889	BanLec	Musa acuminata
LG1209	BPA	Bauhinia purpurea
LG1254	CJA	Crotalaria juncea
LG1366	cMOL	Moringa oleifera
LG1201	ConA	Canavalia ensiformis
LG1249	CorM	Coregonus lavaretus marenae
LG1211	DBA	Dolichos biflorus
LG1206	GNL, GNA	Galanthus nivalis
LG1202	LcH	Lens culinaris
LG1252	NPA	Narcissus pseudonarcissus Daffodil
LG1236	MAA	Maackia amurensis
LG1242	MOA	Marasmius oreades agglutinin
LG1240	PHA-E	Phaseolus vulgaris
LG1239	PHA-L	Phaseolus vulgaris
LG1223	PNA	Arachis hypogaea
LG1203	PSA	Pisum sativum
LG1216	SBA	Glycine max
LG1237	SNA	Sambucus nigra
LG1261	TXLC-I	Tulipa gesneriana agglutinin
LG1234	UEA-I	Ulex Europaeus
LG1229	UEA-II	Ulex Europaeus
LG1253	VEA	Vicia ervilia
LG1204	VFA	Vicia faba
LG1230	WGA	Triticum vulgare

Table 1. Lists of naturals lectins available for the LEctPROFILE	gel.
--	------

Recombinants lectins						
Reference	Lectine	Common Name				
LG1255	BC2L-A	Burkholderia cenocepacia lectin A				
LG1256	BC2L-C	Burkholderia cenocepacia lectin C (N term domain)				
LG1688	FimH	Escherichia Coli Adhesin FimH				
LG2094	HPyL	Human Polyomavirus 9 VP1				
LG1257	PA-IL	Pseudomonas aeruginosa lectin A				
LG1259	PAII-L	Pseudomonas aeruginosa lectin B (Lec B)				
LG2099	RPL-Fuc1	Recombinant Prokaryotic Lectin Fuc1				
LG2095	RPL-αGal	Recombinant Prokaryotic Lectin αGal				
LG1579	RPL-Gal1	Recombinant Prokaryotic Lectin Gal1				
LG1580	RPL-Gal2	Recombinant Prokaryotic Lectin Gal2				
LG1581	RPL-Gal3	Recombinant Prokaryotic Lectin Gal3				
LG1582	RPL-Gal4	Recombinant Prokaryotic Lectin Gal4				
LG1583	RPL-αMan	Recombinant Prokaryotic Lectin aMannose				
LG1584	RPL-Man2	Recombinant Prokaryotic Lectin Man2				
LG2096	RPL-Sia1	Recombinant Prokaryotic Lectin Sia1				
LG2097	RPL-Sia2	Recombinant Prokaryotic Lectin Sia2				
LG2098	RPL-Sia3	Recombinant Prokaryotic Lectin Sia3				
LG1258	RSL	Ralstonia solanacearum				

 Table 2. Lists of recombinants lectins available for the LEctPROFILE gel.

10

References

- 1. Misaki, A., Kakuta, M., Meah, Y., Goldstein, I. J. J. Biol. Chem. 1997, 272, 25455-25461.
- 2. Sueyoshi, S., Tsuji, T., Osawa, T., Biol. Chem. Hoppe-Seyler, 1985, 366, 213-221.

CarbPROFILE gel

11

Description

CarbPROFILE gels are monosaccharides-Sepharose affinity matrices used for purification of specific carbohydrate-binding proteins¹. The carbohydrates are attached through their non reducing hydroxyl group after pre-activation of sepharose matrix by divinylsulfone (DVS) (see scheme 1 below). The binding of lectins and carbohydrates binding proteins to carbohydrate affinity gel is non-covalent and reversible with high capacity. Lectins and carbohydrates binding proteins are both usually stable compounds which can be recovered by competitive elution (*i.e.* 0.2 to 0.5 M of monosaccharide) or by modulations of pH and/or ionic strength in high yield and purity.

Scheme 1. CarbPROFILE gel matrix

Specifications of CarbPROFILE gel

See below (Table 1), the specification of CarbPROFILE gel matrix.

Reference	Name	Specificity	Capacity (mg of protein/mL of gel)	Unit size ^a (mL)
CGF	Fucose-CarbPROFILE gel	Fucose binding protein	> 15 (based on UEA-I lectin)	5, 10 or 25
CGGa	Galactose-CarbPROFILE gel	Galactose binding protein	> 15 (based on AIA lectin)	5, 10 or 25
CGGN	N-Acetylglucosamine-CarbPROFILE gel	N-Acetylglucosamine binding protein	> 15 (based on WGA lectin)	5, 10 or 25
CGM	Mannose-CarbPROFILE gel	Mannose binding protein	> 30 (based on ConA lectin)	5, 10 or 25
CGR	Rhamnose-CarbPROFILE gel	Rhamnose binding protein	> 15 (based on CorM lectin)	5, 10 or 25

Table 1. Specifications of CarbPROFILE gel. a. available in a pre-packed column or in suspension.

References

1. Andon, N. L., Eckert, D., Yates III, J. R., Haynes, P. A. *Proteomics*, 2003, 3, 1270-1278.